Interactional and functional centrality in transcriptional co-expression networks

نویسندگان

  • Edi Prifti
  • Jean-Daniel Zucker
  • Karine Clément
  • Corneliu Henegar
چکیده

MOTIVATION The noisy nature of transcriptomic data hinders the biological relevance of conventional network centrality measures, often used to select gene candidates in co-expression networks. Therefore, new tools and methods are required to improve the prediction of mechanistically important transcriptional targets. RESULTS We propose an original network centrality measure, called annotation transcriptional centrality (ATC) computed by integrating gene expression profiles from microarray experiments with biological knowledge extracted from public genomic databases. ATC computation algorithm delimits representative functional domains in the co-expression network and then relies on this information to find key nodes that modulate propagation of functional influences within the network. We demonstrate ATC ability to predict important genes in several experimental models and provide improved biological relevance over conventional topological network centrality measures. AVAILABILITY ATC computational routine is implemented in a publicly available tool named FunNet (www.funnet.info).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Package 'funnet' Title Integrative Functional Analysis of Transcriptional Networks

Description FunNet is an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytic model implemented in this library involves two abstraction layers: transcriptional and functional (biological roles). A functional profiling technique using Gene Ontology & KEGG annotations is applied to extract a list of relevant biological themes from microar...

متن کامل

Title Integrative Functional Analysis of Transcriptional Networks

Description FunNet is an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytic model implemented in this library involves two abstraction layers: transcriptional and functional (biological roles). A functional profiling technique using Gene Ontology & KEGG annotations is applied to extract a list of relevant biological themes from microar...

متن کامل

Package ‘ FunNet ’ July 18 , 2009

Description FunNet is an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytic model implemented in this library involves two abstraction layers: transcriptional and functional (biological roles). A functional profiling technique using Gene Ontology & KEGG annotations is applied to extract a list of relevant biological themes from microar...

متن کامل

Package ‘ FunNet ’

Description FunNet is an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytic model implemented in this library involves two abstraction layers: transcriptional and functional (biological roles). A functional profiling technique using Gene Ontology & KEGG annotations is applied to extract a list of relevant biological themes from microar...

متن کامل

The analysis of co-citation and word co-occurrence networks of Iranian articles in the field of dentistry

Background and Aims: Dentistry is an important profession ensuring the health of body and soul, and has a special place in the scientific productions of medical disciplines. The purpose of this study was to analyze the co-citation and word co-occurrence of Iranian research papers in the field of dentistry based on indexed documents in Web of Science from 2014 to 2018. Materials and Methods:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 26 24  شماره 

صفحات  -

تاریخ انتشار 2010